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1. INTRODUCTION

It is well known 1'2) that grand unified monopoles catalyze baryon decay with a

strong interaction cross section rather than with a geometric cross section. This

enhancement of the cross section gives rise to some of the most stringent bounds

on the number density of monopoles. 3) It is therefore of interest to investigate

baryon decay catalyzed by cosmic strings.

It has been shown that - at least for integer charged fermions - there is no

enhancement of the cross section for cosmic string-catalyzed baryon decay. This

holds for both ordinary 4's) and superconducting 5'6) cosmic strings. (In the case of

fractionally charged fermions there will be a Bohm-Aharonov effect which leads

to some amplificationT)). The analysis can be performed either using the free

quark picture 4'6) or the skyrmion picture s) for baryons.

In this review we summarize some of the issues relevant to cosmic string cat-

alyzed baryon decay. In the following section we present some heuristic classical

arguments which show why the catalysis cross section is enhanced for monopoles

but not for strings. In Section 6 these classical arguments are developed further

to obtain a derivation of the catalysis cross section for monopoles in the skyrmion

pictureS). In Section 3 we outline the quantum mechanical derivation of the cross

section in the free quark picture, and in Section 5 we present the corresponding

calculation in the skyrmion picture. In Section 7 we discuss some effects which

could screen catalysis processes 9).

Our results - besides their intrinsic interest - have implications for baryogenesis 1°).

As we mention in Section 4, even in the absence of any enhancement of the cross

section, catalysis processes could erase a primordial baryon-to-entropy ratio. The

strength of this effect, however, depends crucially on coupling constants.

We use units in which h = c = kB = 1. G is Newton's constant, and mpl

denotes the Planck mass. a is the scale of symmetry breaking of the phase

transition which produces the topological defects.

3. HEURISTIC ARGUMENTS

Baryon decay can be catalyzed by grand unified monopoles and cosmic strings

because in the core of these topological defects, the gauge and scalar fields which

mediate baryon number violating processes are excited. However, the baryons

must be able to penetrate into the core. Without long range forces which attract

the baryons to the defect, we expect that the cross section will be at most given

by the geometrical cross section.

For monopoles, there is a long range force which can lead to an amplification

of the cross section. Consider the wave function xp of the baryon. The only

harmonic which does not experience an angular momentum suppression near the

core is the 8 wave. For the _ wave, the magnetic moment fi is radial. Hence,



there is a long range attractive magnetic moment-magnetic field B force

F(,') .-. _-,C_ _B) . (2.1)

This force leads to an amplificationof the wave function of the baryon at the core

radius rM ~ #-I of the monopole and hence to a cross section which isenhanced

by A 4, where A is the ratio of the wave functions at rM with and without the

magnetic field.

It ispossible to apply a similaranalysis to ordinary4) and superconducting s)

cosmic strings. For ordinaxy cosmic stringsthere are no long range physical fields

and hence no long range forces. Therefore we do not expect any enhancement

of the cross section. For superconducting cosmic strings there is a long range

magnetic field- however it is proportional to e_ (where _ is the angle in the

plane perpendicular to the string) and hence does not yield any nonvanishing

force via (2.1). Thus there will be no enhancement of the cross section even

for superconducting cosmic strings. Naturally, the above discussion will miss

Bohm-Aharonov type effects_J1).

In the following sections we shall show that the above arguments are con-

firmed by quantum mechanical calculations. In Section 3 we use the freequark

picture (we consider the scatteringof a singlequark due to the background fields

of the topological defect), and in Section 4 we explain how the resultsemerge

using the skyrmion picture for baryons.

3. CATALYSIS IN THE FREE QUARK PICTURE

In this section we ignore the confining forces between the three quarks contained

in a baryon and consider the one particle scattering by the background monopole

or cosmic string fields.

We first derive the cross section for scattering of a quark by a monopole in the

absence of any wave function amplification. We use a second quantized formalism

and work to first order in perturbation theory. Hence we calculate the transition

amplitude ._ between a single quark initial state

and a singlelepton final state

li>-[q,0 > (3.1)

If >= II,o> (3.2)

The _Or in (3.1) and (3.2) indicate that we consider stateswithout any external

gauge particles.The interactionLagrangian is

£I = -ie_ _ _, (3.3)

with A the gauge fields mediating baryon number violating processes.



For monopoles, we can write down the expression for .4 in the absence of long

range fields

= oo <f[i >-oo_ e / d'lx < el_"Clq >< O[A_,lo > (3.4)

up to higher order terms in coupling constants. The first expectation value is

that in the Hilbert space of fermion states, the second in that of gauge particles.

(3.4) can be evaluated approximately by integrating over the core, using free field

wave functions:

-4 ... ea-2m f dt e i(E_-E_')t V-1/Z(EKEK,) -1/2 (3.5)

where rn is the fermion mass. Hence, the differential cross section is

_ [,re. if I' (_)'~ -_V dak'[-4 ,-, e2a -2 (3.6)

T is the total integration time and V the cutoff volume.

The cross section with interactions is

_[int 4dcr~ A _-_ free (3.7)

where, as in Section 2, A is the ratio of the wave function including interactions

to the free field wave function, evaluated at the core radius.

To determine A, we solve the Dirac equation with and without the long range

gauge fields of the monopole. The Dirac equation is

¢ - me = 0. (3.s)

We choose a Weyl basis for ¢ and look for stationary solutions. (3.8) then becomes

(H- E)¢ = 0 (3.9)

where E is the energy of the stationary solution and

H = (3.10)
_. (-i_-eA_) m

We look for simultaneous eigenfunctions of total angular momentum J and its z



component Jz. In the Weyl basis,

0 f,+½_ (3.11)

The crucial point is that kn the presence of a magnetic field, the orbital angular

momentum obtains an extra piece

= ._ A _- eB A _ = -_ ^ _- e0_ (3.12)

This leads to a change in the allowed angular momentum quantum numbers.

Without the magnetic field, the allowed j values are half integer j = (n + ½) , ne Z.

In the presence of a radial magnetic field, the j values are shifted by a constant

proporti0na[ to eg. In the case of monopoles we must assume the Dirac quanti-

zation condition

n! _ T/,!
eg = _- e Z . (3.13)

Then, the admissible j values are j = n, n e Z. In particular, there is a mode for

which the centrifugal potential barrier vanishes. For this mode, the wave function

will be enhanced near the core compared to the modes which dominate for B = 0.

Following the methods developed in Refs. 12 and 13 we write the solutions

for ¢ with fixed j and m as

[ /(r)
Cs_,(r,0,_) = 1 [

r \ o(r)
_(_)

where ,I j,,,
and m. In the absence of the monopole

o_(r) ~mr

whereas in the presence of the monopole

go(r) ~ const

v(1) (0,_))_"_ (3.14)
_(2)
,_;..(0,_)

are 2 component eigensections of J and Jz with eigenvalues j(j + 1)

a_r-,o, (s.15)

Hence, taking the ratio of (3.16) and (3.15) evaluated at the monopole core radius,

we obtain the amplication factor

A ~ O0 (a-') ~ --° (3.17)

gl (o-1) _n

From (3.6) and (3.7), it then follows that the cross section for quark scattering

in the background field of a monopole is

da -2 (3.18)d--n~m ,

the well known Callan-Rubakov cross section.

a_r-_o. (3.16)



In the case of an ordinary cosmic string along the z axis, we can similarly

evaluate the cross section per unit length da/(dfld_) with and without long range

gauge fields. The transition amplitude ._ is

._ ,,, e rn a -1 / dt dz ei(E*-g_')te-i(k'-k")zv-l/2(EkEk,)-l/2A 2 (3.1g)

where A is the wave function enhancement factor at the core radius. Hence,

da

dfld-"'_ "" e2 A4ma-2 " (3.20)

In the absence of purely quantum mechanical effects, we expect the factor

A to be unity because of the absence of physical long range fields. The Dirac

equation simplifies 14) when using the following representation of the -y matrices

(3.21)

Since the z component of the gauge field vanishes, the upper two components

of ¢ decouple from the lower two. The equation for the upper and lower two

components is the three dimensional Dirac equation. The next step is to look

for stationary solutions of the three dimensional Dirac equation with fixed mo-

mentum k and angular momentum j. If p and ¢ are the polar coordinates in the

plane perpendicular to the string, then

\¢'_(k,p) )
(3.22)

The radial functions ¢_ and ¢_ obey the Bessel equation.

Unlike for scattering by monopoles, here the admissible values do not change

when we add the long range gauge fields. However, these fields do effect the

index v of the Bessel function. If the Dirac quantization condition is satisfied,

then for fixed j adding the cosmic string gauge field will shift r, by an integer.

Hence, the behavior of the most singular mode as p --, 0 is unchanged (although

which j value this occurs for does change). Hence, there is no amplification of the

free quark wave function near the core, A --, 1, and there is no Callan-Rubakov

enhancement of the catalysis cross section4).



However, if the Dirac quantization condition is not satisfied, then the index

v changes by a fractional amount when adding the cosmic string field. In this

case, the small p behavior of the most singular mode changes and there will be

an enhancement of the cross section. This is a purely quantum mechanical effect

of the Bohm-Aharonov type 7).

For superconducting ea_mic string the analysis is conceptually identical but

technically more complicated because Az ¢ 0. Hence, the two upper components

of ¢ no longer decouple from the lower ones. We e) obtain a system of coupled

second order differential equations for ¢+ and ¢_, the radial part of the uppermost

and lowermost component of ¢. However, it can be shown that the terms which

couple ¢+ and ¢_- do not influence the small p behavior of the wavefunctions.

Hence, as in the case of ordinary cosmic strings, there is no Callan-Rubakov

enhancement of the cross section.

4. CATALYSIS AND BARYOGENESIS

Catalysis effects open new channels by which baryons, antibaryons and leptons

can equilibrate in the very early universe. Since both initial and final states are in

thermal equilibrium, no net asymmetry can be created by catalysis processeslS).

However, a primordial baryon to entropy ratio may be erased. To check whether

this will occur, we must calculate the efficiency of the process.

Let An be the maximal net number density of baryons converted to an-

tibaryons by catalysis between the time tc of the phase transition which produces

strings and the present time. An depends on the catalysis cross section at high

temperature T which, from (3.20), is

~ taCT)o_ (4.1)
dfldl

Note that the finite temperature mass rn(T) is relevant. At temperatures T :>> rn,

re(T) ... T. An also depends on the mean separation _(t) of strings. Long after

the strings are produced, a scaling solution with _(t) ~ t is reached. However, at

the time of formation to, the separation _(tc) is determined by microphysics16).

In this case _(tc) is the Ginsburg length

~

for an abelian Higgs model with potential

(4.2)

y(¢) -- ¼(¢2_ °2)2 (4.3)

An is obtained by integrating dn/dt, the maximal number of baryons cat-



alyzed per unit time and volume, dn/dt is given by

dn do _-3
d--[ "_ d_-d_ _(t) (t)nB(t)v(t) (4.4)

where nB(t) is the number density of baryons and v(t) is the mean relative speed

between baryons and strings. Obviously, An is dominated by catalysis which

takes place just after to. We can set v(t) = 1 and, using (4.1), (4.2) and rn(Te) -_
el/2a, obtain

An ._ _2eS/2atcnB(tc) (4.5)

Since the baryon to entropy ratio is constant between tc and the time teq of equal

matter and radiation, it can be evaluated at teq

nB(t,q) .._ Te._..2q (4.6)
s(teq) m

where Teq is the temperature at teq and m ~ 1 GeV. Evaluating Tc and dropping

the e dependence, we obtain

An ,._ _2mpt Teq ,., _210_ 5 . (4.7)
a m

Since the presently observed baryon to entropy ratio is 10 -l° < ns < 10-s we
8

conclude that, provided the coupling constant ,_ is sufficiently small, catalysis is

too weak to destroy an initial net baryon to entropy ratio. It may seem surprising

that the effect is not much smaller. It is known lr) that monopole catalyzed

baryon decay is ineffective at erasing the primordial baryon to entropy ratio,

despite a large Callan-Rubakov enhancement of the cross section. However, for

monopoles there is an independent bound on the number density of monopoles is)

which gives a number density much smaller than the Kibble mechanism 16) would

predict. The bound comes from requiring that monopoles do not give an energy

density in excess of closure density. For cosmic strings there is no corresponding

apriori bound, since they chop themselves up efficiently into loops which in turn

decay by emitting gravitational radiation. It is the large number density given

by (4.2) which leads to the relatively large effect on nB/s for cosmic strings.

Note also that at high temperatures (which dominate An), the Callan-Rubakov

enhancement factor for monopoles (o/m(T)) 4 decreases to 1. Hence 19), we expect

that (4.6) will be valid also for fractionally charged fermions.



5. COSMIC STRINGS AND SKYRMION DECAY

So far we have presented a high energy picture of baryon decay, however, since

the current energies and densities in the universe are in fact low, in order to

understand catalysis it is important to develop a low energy picture. One such

possibility was investigated by Callan and Witten 2°), who examined a skyrmion

decay process in the presence of a monopole. We will examine the analogous

process for a string, developing the Callan-Witten argument using the Wu-Yang

picture of a monopole. This allows a ready distinction between the physical sin-

gularity of the electromagnetic fields at the core and the gauge string singularity.

We examine the scattering of a skyrmion off a cosmic string, first trying the wire

model for the string in order to mimic the Dirac model for the monopoIe, however

such a picture does not permit baryon decay. We are therefore forced to consider

a vortex model for the string in order to obtain catalysis in the string core. We

also consider the analogous process for a superconducting string. First we use

the wire model, but despite there being long range fields in this case, we again

show that such a picture does not result in baryon decay. We then use a vortex

model for the superconducting string and obtain catalysis in the string core. The

analysis gives a heuristic explanation of the enhancement factor with monopoles,

as we will show.

Let us first highlight the features of the Skyrme model relevant to the catalysis

procedure. The Skyrme model 22) is a sigma model with stable soliton solutions

otherwise known as skyrmions. In the case of two quark flavours (which we will

be assuming here for simplicity), the pion field content is contained in an SU(2)

= exp -f[l,_F. _}, where _"= (rl, r2, rs) are the three generators of SU(2).

%

field U

The field space is thus isomorphic to S 3. Since finiteness of the energy requires

that U(_ _ const, as : _ :_ co, we can think of a soliton field configuration

as a map from compactified three-space (_s U {oo} _ S 3) to the three-sphere

of SU(2). Such maps may be classified according to the homotopy equivalence

class to which they belong. Since Hs(S s) _ X, we may conclude that soliton field

configurations are labelled uniquely by an integer value, NB (the baryon number),

which is the degree of the map. In a dynamical theory, the continuity of the fields

implies that NB is a continuous function of time and hence constant. The baryon

number may also be more familiarly represented as the charge associated with

the conserved baryon current

Bf- 1 u ) (s.1)
24r_

In the presence of electromagnetism, the model must be generalised to allow

for the nucleon charge and magnetic moment interaction. The Skyrme lagrangian



must be invariant under the gaugetransformation

Au ---* A u + Oua (5.2a)

U ---* eiea(z)QUe -iea(')Q -'- e iea(=)r*/2 Ue -iea(=)r3/2 (5.2b)

where Q is the quark charge matrix (Q = _I2 + ]r3). Taking into account QCD

anomalies, Witten 2a) showed that the baryon current is modified:

B _' = B? -{- _ePuP_cgu[ApTrQ(U-IOaU + O_UU-I)] . (5.3)

The new A_ dependent term is a divergence. Thus provided there are no singu-

larities in A_, and that surface terms vanish, the baryon number is still integral.

In terms of the topological picture presented previously, provided there are no

singularities, U(x) is still a map from S 3 _ S 3 and thus the classification of maps

into equivalence classes labelled by baryon number still holds.

Callan and Witten considered a skyrmion interacting with a Dirac monopole.

In a spherical coordinate basis this has a gauge potential given by

A¢=g(1-cos0) , (5.4)

which is singular on the line # = r, however the electromagnetic flux is finite

everywhere except at r = 0. The singularity of A_ on 0 = 7r is a gauge artifact,

the Dirac string, which arises because we are trying to express the electromagnetic

field tensor as the exact differential of a covector gauge field on _3 _ {0}.

In order to make these intricacies more transparent, we will take an approach

to the Dirac monopole which avoids Dirac strings - that due to Wu and Yang 21}.

Briefly, the singularity in A_ can be removed if one chooses two coordinate patches

for _3 _ {0}, each with an associated A_, relating the two different 'branches' of

A_ by a gauge tranformation on the overlap. Two convenient patches are

(1) r>0} ; (2) {6<e<.; r>0) (5.S)

with

AI_ = g(1 - cos0) ; A2_ =-g(1 + cos0).

These are related by the non-trivial gauge transformation

(5.6)

A2_, = AI_, - 2g0_,¢ (5.7)

on the overlap. This picture now has no coordinate singularities. To include

the SU(2) field, U, in this picture, we note that since the U-field is coupled to



the gauge field the presence of the two branches of A_ indicates that we must

define a separate field configuration on each chart. These will then be related in

the overlap by a non-trivial transformation induced by the gauge transformation

(5.7) on A_,. From (5.2) we conclude that this is

U2 -- e -i_ra]2 UI ei¢rs[2 • (5.s)

We now have a perfectly consistent, singularity free picture of the nucleon on the

background field of the monopole.

Having removed the singularity problem, we see that once again the SU(2)

field configuration is a map from compactified physical space into the SU(2)

three-sphere. However, here we have a non-trivial transformation for U on the

overlap of the two coordinate patches. Thus although we can classify the field

configurations in each case according to homotopy equivalence, there is no reason

to assume that in each case these classes will be the same. Indeed, the effect of the

gauge transformation is to rotate the vector _ by an angle ¢ around the 3-axis,

which will have a twisting effect on the rl, r2 components. Thus the presence of

the monopole gauge field shuffles the members of the baryon equivalence classes.

This 'shuffling' is crucial to the physical description which follows.

Solving the Klein-Gordon equation in the presence of a magnetic monopole

shows that the wave functions of charged pions are suppressed by a factor of r 2

near the core. However for uncharged particles no such suppression occurs. Thus

in order for the nucleon to approach the monopole core, it must be able to deform

into a pure r ° field configuration. In order for this process to be possible, the

r ° field configuration must be able to carry baryon number. Callan and Witten

found that a pure r ° radial configuration, UK = exp{/fr_} (where f runs from 0

at the origin to 2_r at infinity), carries baryon number 1; this field configuration

is called t_e radial kink 2°). Calculating the radial baryon flux of the kink, shows

that the radial flux of baryon number into the monopole core is _. Whether or

not ](0, t) can be non-zero depends on the boundary conditions at the monopole

core. In the case of a grand unified monopole formed during an SU(5) or SO(10)

phase transition for example, it is possible for baryon non-conserving boundary

conditions to be placed, and hence for ](0, t) _ 0. Thus monopoles can catalyse

skyrmion decay.

We now turn to the case of a skyrmion interacting with a cosmic string. At

first sight, we might expect some similarities with the monopole case, since the

monopole has a semi-infinite Dirac string singularity, and we have an infinite

string. However, this would be misleading; the Dirac string is a gauge singularity

and can easily be removed by a more suitable description in terms of coordinate

patches. In the case of a monopole we needed to define two branches of the

gauge field on two different coordinate patches, related by a non-trivial gauge



transformation on the overlap. The cosmic string however, has a perfectly well

defined gauge field without invoking coordinate patches. Thus the gauge field for

a cosmic string exhibits no singularities, the additional term in (5.3) is once more

a total divergence, and baryon number is unchanged. Alternatively, if there are

no gauge singularities, the equivalence classes of the soliton maps are unchanged.

In grand unified models the string width is of the order of M -1, where M is

the grand unified mass. Thus, to mimic the approximation of a monopole by a

Dirac monopole, we take the string as a wire singularity on the symmetry axis.

Away from this singularity the gauge field is given by

A_ = -1V_0 , (5.9)
e

in cylindrical polar coordinates {p, 0, z}. The static Klein-Gordon equation re-

duces to

(s.zo)

Here, rather like the monopole case, g) picks up extra "angular momentum"

around the z-axis due to the presence of a non-zero Ao. For the wire model,

(5.10) implies that the radial part of the wave equation for the lowest angular

momentum eigenstate must tend to zero as least as quickly as p near p = 0.

Therefore, as in the monopole case, the wave functions of charged particles are

suppressed near the core of the string, but those of uncharged particles need not

be. Unfortunately, equation (5.3) implies that it is now impossible for a radial

kink to carry baryon number, since Aj, 1= -_-V_¢ is constant outside the wire.

Taking the wire approximation for a cosmic string leads to a suppression of

the charged pion fields near the string. However, since a radial kink cannot carry

baryon number in this case, we cannot have a deformation of the nucleon fields

that would allow the skyrmion to approach the string core. Hence in the wire

model of cosmic strings we do not get catalysis. Perhaps this problem is a result

of approximating the string core by a line. In order to be more physically realistic,

we will consider a vortex model for the string. To illustrate the salient features

of skyrmion catalysis by cosmic strings it is only necessary to consider an abelian

theory. Thus we consider the Nielsen-Olesen vortex24). This is a vortex solution

to the lagrangian

_[¢,A_,] = D_,¢tD_'¢-_F_,F _v 4 (¢t¢- _/2)2, (5.11)

where D_ = V_ -I-ieA_ isthe usual gauge covariant derivative,and F_ the field

strength associated with A_,.



The Nielsen-Olesen vortex solution corresponds to an infinite, straight static

string aligned with the z-axis. In this case, we can choose a gauge in which

¢ = riX(p)ei 0 ; AU = lip(p) _ llVt_0"
e

(5.12)

This string has winding number one. There are no known analytic solutions for

X and P, but asymptotic forms may be derived. Near the origin, these are:

X oc p ; P - l + O(p 2) as p ---* O, (5.13)

Using the asymptotic form for P in the Nielsen-Olesen vortex field instead of the

wire form in the Klein-Gordon equation (5.10) shows that the radial equation for

the lowest angular momentum eigenstate now allows g_ -_ const, as p ---* 0. Thus,

on the scale of the core of the string, we need not have total suppression of

charged particle wave functions.

Writing the vortex field A_ in spherical polar coordinates and substituting

into (5.3) shows as before, although slightly less trivially, that the radial kink

cannot carry baryon number. However, this is no longer critical for we can have

all three pion fields approaching the core. Once the skyrmion is in contact with

the core of the string, where the grand unified symmetry is essentially restored,

the possibility of decay arises.

We will consider an unwinding process involving all three pion fields by mak-

ing the simple ansatz that the nucleon field configuration now depends on time:

UN(_,t) = exp[iF(r,t)_.f]. (5.14)

The calculation of the baryon current for this field configuration is somewhat

involved 5), the main result we need is the radial baryon current of the field con-

figurations

F r P_ c°s2 0 1
B" =

[P(cos 2F- 1)+ si-_-Oj (5.15)4_r2r 2

Integrating this over a sphere of radius r gives

7

S 2 0

ft.

-- P_ t_'c°s2F2_r / dO sin OP(r sin O).

0

(5.16)

For small r, P(r sin O) - 1 + O(r 2) implies that the flux of baryon number into

the string core is -a_(1 - cos 2F)/lr.



Thus in the presence of baryon non-conserving boundary conditions, such as

we would expect in the string core where the grand unified symmetry is unbroken,

the skyrmion can unwind. Since F(0) = _r and F(oo) = 0 for the standard nucleon

field configuration, we expect that for an unwinding process F changes from _r to

0 at the core of the skyrmion. And indeed

ANB = / Blvdt _ / dt_'(1- cos2F)/r = l A [F -1 ]_r _sin2F = -1 (5.17)

The residual field configurations is a topologically trivial excitation of the pion

fields, and can therefore dissipate.

Thus strings can catalyse skyrmion decay. The picture however relies funda-

mentally on taking a vortex model for the string, i.e. one in which the string has

a finite thickness. A model of the string with infinitesimal thickness (the wire

model) gives no catalysis.

We will now comment briefly upon the generalisation to superconducting

cosmic strings. Unlike their Nielsen-Olesen cousins, these have a long-range elec-

tromagnetic field, so we might expect some differences with the previous analysis.

After all, one of the differences between the monopote and the Nielsen-Olesen vor-

tex was the absence of long range interactions in the latter setup. However this

is not the case as we will now show.

Similar to the cosmic string case discussed previously, we can try taking the

superconducting string to be a wire singularity on the symmetry axis. The long

range electromagnetic gauge field is

-I log(p/po)
Az(p) = 2_ (5.18)

where P0 is the radius of the string, and I is the current in the string. Imposing

(5.18) for p > 0 gives a wire model for the superconducting string.

Since we now have a long range electromagnetic field, we might expect some

modifications of the previous analysis. Consider first the Klein-Gordon equation.

In cylindrical polar coordinates, the Klein-Gordon equation reduces to

(5.19)

Thus, similar to the monopole and cosmic string cases, _ picks up extra %ngular

momentum" due to the presence of a non-zero Az. When we insert the form

for Az from (5.18) into (5.19) there is no analytic solution for _o. However, it

is possible to show that charged particle wave functions are suppressed near the

wire, but those of uncharged particles need not be.



In order to see if the radial kink can carry baryon number we express A_

in spherical polar coordinates. As in the previous discussions, B_ (given by

(5.1)) is zero for the radial kink, and the baryon number of the radial kink

must be zero since there is no _-component or ¢_-dependence in A_. Thus the

previous discussion given for the ordinary cosmic string also applies to the case

of superconducting cosmic strings: since the charged fields cannot approach the

string core, and since a radial kink cannot carry baryon number, the nucleon

cannot approach the core and unwind.

In order to obtain catalysis it seems necessary to consider a vortex model for

the superconducting string. To obtain such a model, we consider the U(1) × U(1)'
model of Witten 2s).

The lagrangian in this case is

= D_dptD_q_- 1G_,vG_'=' + D_atD_'a- 1F_,vF_='£
*t ".t

(5.20)
- [_(_'_- _2)2+ (f,_,2 - m2),_,2+ _,o,'],

where _ and a are complex scalar fields; A_, A¢ and f are coupling constants;

Cj, and A_, being abelian gauge fields carrying charges of g and e respectively,

with G_v and F_v being the corresponding field strengths.

In analogy with the Nielsen-Olesen vortex, we consider a 'static' cylindri-

cally symmetric superconducting string, i.e. one with constant current in the

z-direction. (We will write this constant as G) This means that we can choose a

gauge in which

I(p(p) - 1)V#O= n(p)e'_ c,, =
(5._1)

1

o = S(p)e;_* A_ = _(Q(p) - _)V_z

The analytic expressions near the origin are

R cx p , P = l + O(p 2)

s = So+ o(p2) , q = _ + O(p2).
(5.22)

As with the Nielsen-Olesen vortex, the gauge fields modify the Klein-Gordon

equation. The radial equation now becomes

1-appOp_(p) = [(Q(p) -- f)= + (P(p) - 1)2/p 2] _P(p) = O(p_)_o(p)
P

(5.23)

which allows _o(p) --*const. as p _ 0. Therefore, as with the Nielsen-Olesen



vortex, on the scale of the core of the string, we do not have suppression of

charged particlewave functions.

In order to calculatethe baryon current we require the expression of A_ in

spherical polar coordinates. From (5.3)we can see that ]3# - ]3_vo,the baryon

current for the ordinary (Nielsen-Olesen)cosmic string,since the gauge fieldhas

no _-component or _- dependence. Therefore the radialkink cannot carry baryon

number. But, as with the Nielsen-Olesen vortex we willconsider an unwinding

of topological charge where allthree pion fieldsapproach the core of the string.

As before we use the time dependent nucleon ansatz (5.14).The calculation

of the baryon current proceeds in a similar fashion to the Nielsen-Olesen case.

Since ]3# - B_o ,we get the same baryon fluxas with the ordinary cosmic string,

hence ANB : --1 as before. Thus superconducting stringscatalyse baryon decay.

But, since we were forced to take a vortex model, i.e.a stringwith thickness,the

process proceeds on the scale of the stringcore.

To summarise, we have developed the argument of Callan and Witten for

monopole catalysisof skyrmion decay in such a way that the effectsof a topologi-

callynon-trivialgauge fieldare highlighted. We then explained the corresponding

scenario for cosmic strings.We found that a wire model of the stringwas incom-

patible with catalysis,but that a vortex model admitted a catalysis scenario.

This was also shown to be the case for superconducting strings.

These resultssupport the followingheuristicargument (which we willsupport

in Section 6) for the enhancement factorin the case of the monopole cross-section.

The monopole argument was conducted exclusivelywithin the approximation of

the Dirac monopole; the only place the concept of a grand unified monopole

occurred was in invoking baryon number non-conserving boundary conditions.

By contrast,a thick stringor vortex model was required in order to get catalysis

to occur at allin the stringpicture. Thus in the monopole picture,the only scale

we have isthe skyrmion scale on the other hand, the inescapabi]ityof the vortex

model in the string case suggests that the reaction is occurring on the scale of

the string radius, rather than the skyrmion radius, thus giving a grand unified

cross-section.

In fact, it is possible to give a better qualitativeargument for the order of

magnitude of the cross-sections.For the monopole we start with the geometrical

cross-sectionm -2 of the skyrmion. Catalysis then proceeds via the radial kink,

and since there isno suppression of the neutral pion wave function in the pres-

ence of the monopole, the effectivecross-sectionhas the same order of magnitude

as the geometrical cross-section.Similarly,for the string we start with the ge-

ometrical cross-sectionper unit length m -1. However in this case the catalysis

cannot proceed via the radialkink, and involves the fullskyrmion fieldconfigu-

ration.By examining the Klein-Gordon equation, we see that the wave functions



of the charged particlesinvolved in the catalysisprocess are suppressed inside

the string. For distances between rn-I and Air-1 _ oc p. But for p </PI -I the

relevant wave equation is (5.15)and _ oc const, as p _ 0. To match solutions

at p -- Air we require that the amplitude of _b in the core of the string be of

the order re�A4. Hence, the scattering amplitude for catalysisprocesses will be

suppressed by m/M, and the cross-sectionsby (re�A4) 2, compared to the geo-

metrical cross section. The stringcatalysiscross-sectionswilltherefore be of the

order (rn/lVI)M -I. Similar arguments apply in the case of the superconducting

cosmic string.

These resultssupport the earliercalculations involving a quark/string scat-

tering,that is,that there is no enhancement of the baryon decay cross-sections

for strings.Hence there willbe no constraintson the cosmic string scenario from

catalysisbased on later time astrophysical processes. The arguments presented

here are heuristic,however, the calculations) (seeSection 6) of the cross-sections

using a non-relativisticspinning particlepicture confirms these conclusions. The

argument provides an elegant pictorialdescriptionof the skyrmion decay process.

It shows clearly the differencebetween the monopole and string cases,and also

readily obtains the superconducting stringcatalysispicture.

0. THE CALCULATION OF THE CATALYSIS CROSS-SECTION

We have seen in the previous sections that, in both the free quark and the

skyrmion pictures, the cross-sectionfor proton decay via cosmic strings isjust

the geometric cross-section,whilstthat for monopoles isenhanced via the Callan-

Rubakov effect.Although the Skyrme model provides additional insightinto the

decay process and gives an order of magnitude for the cross-section,calculation

of the actual cross-section has not been possible. However, the skyrmion is a

non-relativistic,spin 1/2 particle.Thus the catalysiscross-sectionfor skyrmion

decay isjust the capture cross-sectionof a spin 1/2, non-relativisticparticleby

a monopole or superconducting cosmic strings).

The classicalequations of motion of a non-relativisticspin 1/2 particlein the

presence of a magnetic fieldare

rn_= e_A]_ + _V(S.]_) (6.1)

- Qe
s=-- (6.2)

2m

where, for the Dirac monopole, the magnetic fieldis]_ = _g/r s, m is the mass

of a baryon of charge e and anomalous magnetic moment Q. The motion has



conserved angular momentum

(6.3)

which can be used to eliminate the spin ff from (6.1). Using spherical polar coor-

dinates, the ¢ and 8 equations can be readily integrated. All angular dependence

then cancels from the radial equation to give

rS_ = 2n -- h 2 - 2eg i (6.4)

where Fl is a constant of integration, h - --_(1 + Q/2) and i = Qeg/2m 2.

Equation (6.4) is simply the radial equation of a body moving in an inverse cubic

central force. The separation goes to zero, i.e. the baryon hits the monopole, if

and only if r 3 _ < 0.

If the baryon has speed v and impact parameter ;_ then, after rearranging,

(6.4) becomes

r3r -- v2fl 2 -- 2i[._[ sin v cos #

where # and u represent the spin orientation in spherical polar coordinates. Hence

the hit condition becomes

< I leg Q sinvcos .

Averaging over the initial orientation of spin and using the Dirac quantisation

condition we obtain

a ~ 2-5/2

For the proton Q ~ 2.8 and for the neutron Q ~ -1.9. This change of sign simply

alters the sector of spin average which contributes, so we need only consider the

magnitude of Q. Hence we obtain

Oproton" 0.2 (c/Vmonopole)2mbarns

aneutro n ,_ 0.13(C/Vmonopole)2mbarns

In a neutron star the relative velocity of the monopoles is 0.3c to give # --, 1.3

mbarns. This cross-section gives a bound on the monopole flux that is more strin-

gent than that found in s) by a factor of 3. For velocities of 0.3c the non-relativistic

approximation is valid since _/ --, 1.05 and the Thomas precession term is very

small. It should be noted that our calculation gives av 2 ~ constant. Previous es-

timates of the monopole flux have used av ~ constant, which comes from a model

calculation of Rubakov 2), where the capture cross-section was neglected_e).



Rather than using the magnetic field of a magnetic monopole in (6.1) we can

use the field of a superconducting cosmic string

1 (6.s)
0

In thiscase we use cylindricalpolar coordinates and take the stringto run along

the z axis. The axial symmetry of the string yieldsconservation of the z com-

ponent of the total angular momentum only, thus itisnot possible to eliminate

the spin from the equations of motion as in the monopole case. The conserved

quantity,which we denote by Jz, is

d/dr + S.) : 0 (6.6)

We also have energy conservation

E = (sE) (6.7)

Using (6.6) and noting that we can integratethe z component of the equation of

motion to give an equation for _.we obtain

rn rn_r _ + _ log s r 2rn 2Qe7rrISo (6.8)

where r0 isthe distance at which _ = 0.

The firstterm will dominate at small enough r, thus the only particlesable

to reach the core are those with Jz - Sx = 0. This requires the initialconditions

= 0. However, ifwe consider a Classicaldistributionof initialspins and orbital

angular momenta, there are no particlessatisfyingthese stringent conditions.

Thus the cross-section is zero in the limit of zero string width, as we found

earlier.

We can substitute in the various constants into (6.8)and multiply both sides

by r2 so that the right hand side iswritten in terms of rl. The resultingequation

isthen displayed graphically in Fig.(1),where a lineof constant energy is also
drawn.

For the initial conditions r = r0,÷ = _: = 0,_ = 0 the particle starts at the

bottom of a sharp dip in the potential, the height of the barrier being approxi-

mately 40012m. To surmount this barrier the particle requires an initial speed

÷o ~ lOIm/s. Thus the maximum current in the string for which a nonrelativistic

particle can reach the top of the barrier is I ,_ 107 amps. This is several orders
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FIG. (1): General form of equation (6.8) plotted on a log-log mcale. The curve represents the

effective potential and the straight line is of constant energy.

of magnitude lessthan estimates of the maximal string current2s,27).Further,

from Fig. (1) we can estimate the maximum current in a string that allows a

non-relativisticparticleto penetrate untilitisstopped by the centrifugalbarrier.

This yieldsthe constraintZ < 106(÷0/c)amps. Hence, for the maximal stringcur-

rent the non-relativisticapproximation breaks down. This suggests that proton

decay via superconducting cosmic stringsonly occurs at very high velocities.

7. SCREENING EFFECTS

So far, we have seen that cosmic strings can catalyze baryon decay, albeit with

a grand unified cross section. However, we have not considered any effects which

may screen the interaction. One origin of screening is the nontrivial spatial

geometry of a cosmic string.

It has been shown 2s) that space around an infinitely long straight string has

the form of a snub-nosed cone; that is, at the core of the string space is fiat while

asymptotically it is conical. The deficit angle of the cone is 87rG_, where # is

the mass per unit length of the string, and typically (7/_ N 10 -e. Scattering of

bosons and fermions on a cone has been considered in Ref. 29.

Due to the di_culty in worklng with the fully coupled matter and gravita-

tional equations, most analyses of the Callan-Rubakov effect ignore the gravita-

tional effects of the string. However, Smith 9) and Linet s°) have shown that a test

charge in a conicalspace experiences an electrostaticself-forcewhich isrepulsive

and scales as l/r, where r is the distance from the apex of the cone. In this

section,we investigatethe consequences of thisself-forcefor catalysis.We find a

potentialbarrier of height about 107 GeV.

To understand the originof the repulsiveself-force,consider as a simple case

the self-potentialof a testcharge in a conical space with deficitangle _r.In the

wedge representation, I.e.flatteningout the cone, the potential problem isthat

of a point charge in the upper half plane with Neumann boundary conditions.
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FIG. (2a): The general wedge

representation. Shading indicates

wedge not convered by the core.

FIG. (2b): Deficit angle = _.

Identify the dashed and bold lines.

To see this,cut the cone opposite to the charge (Figure 2). The apex of the

cone becomes the origin,the test charge lieson the y axis and the cut edge of

the cone becomes the positive and negative parts of the z axis. Since the two

sides of the cut are to be identified, the potential must satisfy _b(x) = _b(-z)

at _/= 0. Furthermore, by rotational symmetry it follows that a_b/ay _=0 = 0.

Thus we have Neumann boundary conditions. The potential is now easily found

by introducing an image charge of the same magnitude and sign at the site of

the test charge reflected about the x axis. Hence, there is a repulsive potential

proportional to 1/r.

For the singular cone, Smith 9) calculated the self energy of a particle of charge

e. The resulting self force is (with p = 1 + 4G#)

with k(p) _--_GI_ .

(7.1)

The space-time of a cosmic string does not have a singularity at the origin.

A more realistic space-time structure is that of a snub-nosed cone zs) which is a

consequence of the vortex model2°). Using the symmetries of the problem, we

can write the metric in the form

&2 = e-t(dt2 _ dr2 _ dz 2) _ a2 e-._d02 (7.2)

with induced Laplacian

v2=e-  r2+ ,



(7.3)

where _denotes differentiationwith respect to r. Inserting the above ansatz into

the Einstein equations leads to the followingdiffentialequations for the functions

a"= -_ae_CE - ep)

&'7'2

a(,,t) and"7(,,t):

(7.4)

It is convenient to write these equations in terms of dimensionless variables & -

airs, p - '/', (where "a is the radius of the string) and e = 8_rG#. E, Pp and P0

are also dimensionless and can be obtained from the corresponding components

of T_v by dividing by A/z2.

In order to determine E, Pp and Pe it is sufficient to consider the fiat space

matter field equations. The fully coupled system (i.e. matter equations coupled

to the snub-nosed cone dynamical background) has been considered 31) and it

was shown that the flat space solutions of the matter field equations are a good

approximation to those obtained from the fully coupled system.

Proceeding along the lines of Ref. 9, we can expand the self potential into

eigenfunctions of Lz. The m'th harmonic satisfies the following radial differential

equation

¢" + ¢"- _,_m + k2 ¢., = 0 (7.5)

In the case of the singular cone, a = rip and (7.5) is a modified Bessel equation.

For the snub-nosed cone, air and "7 are no longer constant. There exists no exact

analytical solution for a and "7. However, for small r we have 2s)

a ~, and "7(0) = "7'(0) = 0 (7.s)

whereas for large r (r _> (2 - 3),,)

a -- a, + b and "7 - const (7.7)

To firstorder in e,a = 1-0(e),b = 0(e)and '7= O(e). Inserting (7.6)and (7.7)

into (7.5)we find that the right hand side becomes 0(_/),where L,- rne'Tr/a.

For slowly evolving deficitangles vr _- 0. Thus, in this approximation (7.5) is

essentiallya modified Bessel equation with, dependent constants. In this case

the method of Smith 9) can be used, and leads to a similar result,but with an

evolving value of p. At r = 0,p = 1 and there isno self-force.This isexpected

since the space-time is fiat at the centre of the string. For, > 2r,, p is fixed at its



large r value of 1 ÷ 4_rG#, and we obtain the 1/r potential of Smith for distances

2-3 times r,. Closer than this the deficit angle diminishes and the potential drops

to zero. The height of the screening potential can be estimated from the value of

the singular string potential at r = 2r,. For G/_ -- 10 -B the height is about 10 T

GeV.

To conclude, we have found that taking into account the structure of space-

time around a cosmic string leads to a potential barrier of height about l0 T

GeV. Classically, this would restrict catalysis to a high energy process. Quantum

mechanically, there is tunnelling through this barrier, as discussed in Ref. 32.

8. CONCLUSIONS

In this review we have seen that, in both the free quark and skyrmion pictures,

cosmic strings and superconducting strings catalyse baryon decay with a grand

unified cross-section. This is in contrast to the monopole case where the cross-

section is enhanced via the Callan-Rubakov effect. We have seen that this differ-

ence can be traced to the presence of long-range, attractive forces in the monopole

case which cause the wavefunction to be enhanced in the monopole core. In

contrast, there are no attractive forces in the cosmic string case, and thus no

enhancement of the wavefunction in the string core. Thus the cross-section is

just the geometric cross-section. This is the case for integer flux. For fractional

flux there is an enhancement of the wavefunction in the string core due to the

Aharanov-Bohm effect.

Despite the small cross-section, cosmic string catalysis can have physical con-

sequences in the early Universe. Near the phase transition the number density of

strings is very large and can erase a substantial fraction of a pre-existing baryon

asymmetry. Whilst the cross-section is enhanced for non-integer flux we have

briefly discussed how the amplification factor is damped at finite temperature,

in a similar manner to that of the monopole case. Hence, it is unlikely to have

implications for baryogenesis over and above that already discussed for integer

flux.

In the Skyrme model we have actually been able to estimate the cross-section

for monopole catalysis. Since the skyrmion is a non-relativistic, spin 1/2 particle

the cross-section is just the capture cross-section, found by solving the classical

equations of motion. For the superconducting cosmic string we found a potential

barrier that seems to indicate that catalysis is a high velocity process.

Finally we have considered effects that might screen the cosmic string catal-

ysis cross-section. By taking into account the non-trivial space-time structure

around a cosmic string we have shown that charged particles encounter a poten-

tial barrier of height 10 T GeV. Classically this limits string catalysis to a high

energy process near the phase-transition, though quantum mechanically there is



the po6sibility of tunnelling.
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